Molecular Dynamics Modeling of Hypersonic Gas-Phase and Gas-Surface Reactions
نویسندگان
چکیده
Abstract. Efforts to use molecular dynamics (MD) to develop both non-equilibrium dissociation models required in the shock layer as well as gas-surface interaction models specifically for surface catalysis will be summarized. First, an accelerated MD algorithm for dilute gases is presented, called the Event-Driven/Time-Driven (ED/TD) MD method. The method detects and moves molecules directly to their impending collision while still integrating each collision, including multi-body collisions, using conventional Time-Driven (TD) MD with an arbitrary inter-atomic potential. The simulation thus proceeds at time steps approaching the mean-collision-time. Preliminary nonequilibrium relaxation and normal shock wave simulations are in excellent agreement with direct simulation Monte Carlo (DSMC) results with large speedups over conventional TD MD, especially at low densities. Second, an MD simulation technique to study surface catalysis employing the ReaxFF inter-atomic potential is detailed. SiO2 surfaces are equilibrated with a dissociated gas mixture at various temperatures and pressures, establishing surface coverage. Rates of dominant reaction mechanisms, including adsorption, desorption, and E-R/L-H recombination, are then determined by counting individual events. The experimentally measured exponential dependence of recombination coefficient on temperature is well predicted by the MD simulations.
منابع مشابه
DSMC Simulation with Gas-Surface Interaction Models in Hypersonic Rarefied Flow
A DSMC (direct simulation Monte Carlo) simulation using Dynamical Molecular Collision (DMC) model based on Molecular Dynamics (MD) calculation with various gas-surface interaction models is applied for solving the two-dimensional nonequilibrium hypersonic rarefied flow over a flat plate with leading edge angle. The gas surface interaction models adopt the diffuse reflection model, the Cercignan...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملDynamic investigation of hydrocarbon proton exchange membrane Fuel Cell
Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...
متن کاملMultisurface Adiabatic Reactive Molecular Dynamics.
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a n...
متن کاملNumerical modeling of three-phase flow through a Venturi meter using the LSSVM algorithm
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable of three-phase flow. Hence phase behavior identification in different conditions to designing and mo...
متن کامل